Why Does 2,3,5,6-Tetrachlorophenol Generate the Strongest Intrinsic Chemiluminescence among All Nineteen Chlorophenolic Persistent Organic Pollutants during Environmentally-friendly Advanced Oxidation Process?
نویسندگان
چکیده
We found recently that intrinsic chemiluminescence (CL) could be produced by all 19 chlorophenolic persistent organic pollutants during environmentally-friendly advanced oxidation processes. Interestingly and unexpectedly, the strongest CL was produced not by the most-highly chlorinated pentachlorophenol (PCP), but rather by the less chlorinated 2,3,5,6-tetrachlorophenol (2,3,5,6-TeCP), one of the three tetrachlorophenol (TeCPs) isomers. However, it remains unclear what is the underlying molecular mechanism. Here we show that not only chlorinated quinoid intermediates, but more interestingly, semiquinone radicals were produced during the degradation of the three TeCPs and PCP by Fenton reagents, and the type and yield of which were found to be well correlated with CL generation. We propose that hydroxyl radical-dependent formation of more tetrachlorinated quinoids, quinone-dioxetanes and electronically excited carbonyl species might be responsible for the exceptionally strong CL production by 2,3,5,6-TeCP as compared to PCP and its two isomers. This is the first report showing the critical role of quinoid intermediates and semiquinone radicals in CL generation from polychlorinated phenols and Fenton system. These new findings may have broad chemical and environmental implications for future studies on remediation of other halogenated persistent aromatic pollutants by advanced oxidation processes.
منابع مشابه
Electrochemical Advanced Oxidation Processes (EAOPs) for Environmental Applications
Conventional processes for water treatment are inefficient for the remediation of wastewaters containing toxic and biorecalcitrant organic pollutants. A large number of advanced oxidation processes (AOPs) have been successfully applied to degrade pollutants present in waters. These methods are based on the generation of a very powerful oxidizing agent such as hydroxyl radical ( • OH) in solutio...
متن کاملManganese Functionalized Silicate Nanoparticles as a FentonType Catalyst for Water Purification by Advanced Oxidation Processes (AOP)
Wet hydrogen peroxide catalytic oxidation (WHPCO) is one of the most important industrially applicable advanced oxidation processes (AOPs) for the decomposition of organic pollutants in water. It is demonstrated that manganese functionalized silicate nanoparticles with interparticle porosity act as a superior Fenton-type nanocatalyst in WHPCO as they can decompose 80% of a test organic compound...
متن کاملStudy on Trend of Biodegradability of Phenolic Compounds During Photo-Fenton Advanced Oxidation Process
Phenolic acids constitute a major group of pollutants which are recalcitrant to common biological treatment. In this study synthetic wastewater containing a mixture of p-coumaric and p-hydroxybenzoic acids was evaluated for photo-Fenton pretreatment. The changes in biodegradability (ratio of biochemical oxygen demand to total organic carbon (TOC)) and mineralization (TOC removal) were monitored...
متن کاملA Review: Titanium Dioxide Photocatalysis for Water Treatment
In recent years, semiconductor photocatalytic process has shown a great potential as a lowcost, environmental friendly and sustainable treatment technology to align with the“zero” waste scheme in the water/wastewater industry. The ability of this advanced oxidation technology has been widely demonstrated to remove persistent organic compounds and microorganisms in water. This paper presents the...
متن کاملEnvironmentally Friendly 1-2
An Era of Hazard: Persistent Organic Pollutants By Marco A. Olsen, S.J.D. Candidate In May 2001, representatives from over 122 countries, NGOs representing citizens and the chemical industry, met in Stockholm to adopt and open for signature The Stockholm Convention on Persistent Organic Pollutants. The Convention is a legally binding treaty designed to protect human health and the environment f...
متن کامل